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EXACT DETECTION PERFORMANCE OF NORMALIZER WITH MULTIPLE-PULSE

FREQUENCY-SHIFT-KEYED SIGNALS IN A PARTIALLY-CORRELATED FADING

MEDIUM WITH GENERALIZED NONCENTRAL CHI-SQUARED STAT_ TICS

INTRODUCTION

In a recent study [1], the detection performance capability

of a multiple-pulse, frequency-shift-keyed system, with received

signals subject to partially-correlated fading, was analyzed

exactly in terms of the characteristic function of the system

output decision variable. It was assumed there that the additive

background noise level was known, so that a fixed threshold could

be set for an arbitrarily specified false alarm probability.

Then, the detection probability was evaluated exactly, as a

function of the threshold level, the received signal-to-noise

ratio, the number K of signal pulses, and the fading statistics.

Here, we extend these earlier results to cover the case

where, instead, the background noise level is unknown and must be

estimated on the basis of a finite number L of noise-only

samples. Furthermore, the current analysis will also be exact,

yielding new series expansions for the detection and false alarm

probabilities. These new results replace the approximate

analysis of the same normalizer system that was conducted in [2].

This normalizer possesses the important capability of constant

false alarm rate; that is, a prescribed false alarm probability

can be achieved, exactly, in the absence of knowledge of the

actual noise background level.
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The reader is referred to [1] for additional background,

motivation, interpretations, and related references. For the

sake of brevity, we will employ the same notation as in [1] and

presume that the reader has complete familiarity with the earlier

material and developments.

2
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PROBLEM DEFINITION

BASIC SIGNAL PROCESSING

The problem of interest will be couched in a time, frequency

setting, in which the individual transmitted signal pulses occupy

disjoint nonoverlapping cells; however, the extension to other

variables, such as space or angle, should be obvious.

A set of K signal pulses is transmitted at known time,

frequency locations, as indicated in figure 1. These pulses may

be abutting in time and/or frequency, or they may be widely

separated in time, frequency space. The individual signal pulses

need not have unity time-bandwidth product, although many

practical applications would utilize that format.

frequency

_ -Z K

Esignal

_ _ pulses

} L noise

[7-- -only

bins

time

Figure 1. Time, Frequency Occupancy Diagram

3
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At the receiver, the noisy received waveform is processed

through K matched filters, which utilize knowledge of the

particular time, frequency occupancy pattern of the signal

pulses. Their squared envelope outputs are then appropriately

sampled and summed for comparison with a scaled estimate of the

background level obtained from the reference collection of L

noise-only bins. The scale factor applied to the noise-level

estimate yields the threshold value, which is selected to realize

the desired false alarm probability. If the threshold is

exceeded by the sum of K squared envelopes, a signal is declared

present in that pattern of K pulses.

Depending on the time, frequency separation of the signal

pulses in figure 1, the received signal strengths of the

individual pulses, when signal is present, may fade considerably

and with statistical dependence between them. The exact amount

and effect of the fading depends on the distribution of the

fading and on the KxK covariance matrix between the fading

amplitudes applied to each signal pulse.

It is presumed, as in [1], that during the time extent of a

single pulse, the fading of that particular pulse is essentially

constant, resulting in a constant amplitude scaling and phase

shift applied to each received pulse. The phase shifts of

distinct pulses can have arbitrary statistics and dependencies;

the particular phase shifts are irrelevant in the method of

signal processing adopted here and in [I].

4
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The choice of L, the number of noise-only pulses, must be

based on a compromise. Larger L results in a more stable

estimate of the background noise level, in which case the

performance of the normalizer processor for figure 1 approaches

that for the fixed-threshold processor in [1]. However, L cannot

be chosen so large as to encounter nonstationary and/or nonwhite

noise fields over the time,frequency extent depicted in figure 1.

For signal pulses consisting of bursts of pure tones, the

receiver implementation of figure 1 can be accomplished by means

of fast Fourier transforms. This case would utilize signal

bursts and noise slots that have approximately unity time-

bandwidth products, and would result in minimum consumption of

time, frequency space in figure 1. However, the results

presented below are not limited to this special case.

5
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REVIEW OF PARAMETERS

Very heavy reliance will be made upon the methods and results

presented for the fixed-threshold system analyzed in [1], and

which the reader must be familiar with. However, it is very

worthwhile at this point to review and summarize the most

important and critical parameters that governed performance in

[1], and which are relevant to the normalizer analysis here, as

well. These parameters are listed below; their first appearance

and detailed explanation can be found in [1; pages iv - viii] in

the list of symbols there.

K number of transmitted signal pulses; see figure 1 above

M number of components in fading model; see (1; (45) - (47)]

Elm average random received signal energy in the m-th
component of a single pulse, 1 • m S M; see [1; (52)]

N0 one-sided spectral level of received white noise (unknown)

C(m) KXK normalized covariance matrix of signal amplitude

fading; see (1; (127)]

A(m) KXK eigenvalue matrix of C(m)

Xm) k-th eigenvalue of matrix A(m), 1 5 k _< K

Dkm deterministic received signal energy in them-th component of the k-th pulse; see [1; (50)]

V~m) k-th eigenvector of C(m)

v•m) j-th component of vector v(m), 1 • j S K

(im) auxiliary constants; see [1; (137)]
-k

41M fractional strengths of random components; see [1; (191)]

6
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It is also worthwhile at this point to expound on the

covariances of the fading model, since these will be used at a

later stage of the development. The covariance function of the

alternating component gm(t,f) in [1; (45) & (47)] is

R(mn(,V) = g m(t,f) gn (t-T,f-V) , (1)

while the covariance of power-scaling variate q = q(tk'fk) is,

from [1; (43), (44), (54), (55)]

Rkj = Cov(qk'qj) = Cov q(t kfk), q(tj'f.)) " (2)

The covariance coefficient between qk and qj is

R, [Rll(tk-tjfk-fj) 2 (3)PkJ =Rkk kRjj)½ Rl1(0,0),(3

from [1; (56), (66) or (69)]. We also define the normalized

covariance function

Cov(T,V) = R1 I(0(4)

R11(010)

as in [1; (194)], from which there follows

Pkj = Cov 2 (tk-tj,fk-fj) (5)

as in [1; (56), (66) or (69)]. Finally, we define a special case

of (4), for the case of equally time-spaced signal pulses without

any frequency shifts, according to

7
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CoyI = Cov(tk+l-tk,) = R(tk+l-tk,0) for all k , (6)

since this quantity will be very useful later; this last quantity

in (6) was denoted by Cov in [1] and all the figures therein.

8
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EXCEEDANCE DISTRIBUTION FUNCTION OF NORMALIZER OUTPUT

FIXED-THRESHOLD PROCESSOR OUTPUT

Before we begin the analysis of the normalizer, we need to

review and manipulate the results for the fixed-threshold case.

The general result for the characteristic function of signal

processor output y, in the case of M uncorrelated components in

fading model [1; (45)], is given by [1; (136)] as

f y() = (1 - i 2 &)K(½M-1) T TTT( 1 - i2Q k) X

m=1 k=l

X exp i& M 1 e ' (7)M=l k=l -iQmki

where

2Em 2m m

Qmk 1 N mk () 2 for 1 m • M , I • k S KmkN -k -k i
0

(8)

This situation pertains to ignoring the L noise-only outputs in

the lower portion of figure 1.

We will limit consideration here to the special case 6

delineated in [1; page 23]. Then, eigenvalues (XkI and

eigenvectors {VkI are not functions of component number m, and

2E1
Qmk N 1 -okm "k(9

from (8) and [1; (191)]. Also, from [1; (157)],

9
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(in) =K 2D. j½ (10)
==:Z Vkj INO

We now want to perform a transformation of variable [ in

characteristic function (7). In particular, consider the use of

the slightly more general transformation (relative to that used

in [1; (D-3)]), where scale factor • is under our choice:

1 i&( > 0) . (11)

Substitution into (7), and expansion in a power series in z

(according to appendix A), yields the characteristic function of

the fixed-threshold processor output y in the (modified but

exact) form

f(c~: = F zK = fp zP = F f (1 - i~p-K-p (12)

where the constants are found according to

K fM K -½- M K ekF l' Qkao =-2--["•Q'k' (13)
m=l k=l m=l k=l mk

pa= 1 M K p- 1)~ p eemkim kl mk L'2Qmk emkQ
K• p- --

- - - for p 1, (14)

f= =exp(a) , f = n an f for p z 1 (15)
o 0a p f P n p-n

10



TR 10275

For • = 2, (14) reduces to [1; (185) or (D-10)]. However, we

want to choose 0 here so that the magnitudes of the coefficients

IF f } in (12) decay as rapidly as possible with p. On the otherp

hand, some of the if p can then be negative.

Now, suppose we have found the characteristic function of any

random variable y in the series form (12), where K is integer.

Then, the origin value of the characteristic function is

fy(0) = F = fp = 1 , (16)
Y p=

while the corresponding probability density function of y is

p( K+p-1 exp(-x/A) for x > 0 . (17)py(x) = F =- f x frx>0(7
Y p=0 p pK+p (K+p-l)!

The exceedance distribution function of y is then

E (u) = f dx p (x) = F 0 fp f dx xK+p-I exp(-x/0)u p=0 P K+pY J Y = Ku A (K+p-l)!

u ul
= F=q f EIK+p,I = (18)

p=0 O

1-F f 1-EK+p,, for u > 0 (19)
p=0 P I - ) I

where we used (16). Physically, this exceedance distribution

function is the probability that fixed-threshold processor output

y is greater than a constant value u; that is,

ii
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E y(u) = Pr(y > u) (20)

Here, in (18), we used the following definition of the exceedance

distribution function E, which can be expressed in terms of

incomplete gamma functions:

v-i

E(Vu) = Ldxj exp(-v) = r(v,u) for u k 0 , v > 0 (21)

U

More details on recursions for these functions, when v is equal

to an integer or a half-integer, are given in appendix B.

12
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NORMALIZER OUTPUT

Now, let fixed threshold u in (20) be replaced by a variable

threshold according to

u = v Yo0  (22)

where v is a positive scaling constant, and yo is an independent

positive random variable given by the sum of the L independent

noise-only bin outputs in figure 1. This latter quantity is

proportional to an estimate of the noise background power level

in which the normalizer system is operating. The characteristic

function of y can be found from [1; (40)], by replacing K by L

and by setting signal strength E to zero:

f Yo() = (1 - i2&)-L. (23)

The corresponding probability density function of y is

L-1

pyo(x) = x exp(-x/2) for x > 0 . (24)
o 2 (L-1)!

We are now interested in the exceedance distribution function

En(v) of the normalizer output, namely ratio Y/Yo:

En(v) a Pr > v = Pr(y > v y0 ) = E (v yo

J0 L-1 x-/2 C
f dx py(x)Ey(V x) = dx x exp(-x/2 = F(- f= E(K+p,'x=

d o (x)fE0 2L (L-1)! p=0

13
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F 0 xL-1 exp(-x/2 Y)
-F f f dx L expt x

0 2 (L-1)! k=O "

-F 0 Kz- l (v k CO d L-1+k(1 'F=, fP K! j dx x exp + v2 I
= 0 2L (L-1)! Y))

F L -cof2V (L1k2v k

- F ( )+2vL f T K-I+p,L-I, 2v ' (25)
P v p=0 P A + 2v

where we define the auxiliary functions

m (n+k m xk m

T(m,n,x) - xk - (n+1 = E-Z U(k,n,x) . (26)
k=O k=O k=0

As a partial check on (25), we have origin value

En (0) = F = fp T(K-I+p,L-1,0) = F = fp = 1 , (27)
P=0 ~'P=O

using (16).

For rapid evaluation of functions T and U in (26), we have

recursions

T(m,n,x) = T(m-l,n,x) + U(m,n,x) for m k 1 , (28)

U(m,n,x) = U(m-l,n,x) n+m x for m a 1 (29)

along with starting values

T(0,n,x) = 1 , U(0,n,x) = 1 (30)

14
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A general result that will find frequent application is

n+1 n+1 31
(1-x) T(m,n,x) = 1 - x T(n,m,l-x) (31)

As a special case, we also have [3; 15.1.8]

Sk(32
T(',nx) = =-l (n+l)k K. =F0(n+l;x) = (i x)-n-i

k=0 ) 1

By means of this last relation, we have

T(c,L-1,+ 2v) = (1 2v) -L = + 2v) L (33)

which enables the normalizer exceedance distribution function in

(25) to be expressed in the alternative form

E v L o T lp,- 2v (,+2v) L +(,+ 2v)Li=E+(v)= f l v+2j A+

=1 F -F f i [ L T(K-TK+ p,L-1, 2v-2 - (34)

p=--- p+2 '0+2v L•

where we used (16). This latter form is recommended over (25)

because both fp and the bracketed term, [ ], in (34) go to zero

as p 4 -. The approach of f to zero follows from (16). It isp

also very important to notice that the bracketed term in (34) is

not a function of the signal-to-noise ratio.

By means of (31), (34) can also be expressed as

E (v) = 1 - F Z p ( 2v)K+p T(L-1,K-l+p,•+2v . (35)
p=0

15
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Although both fp and the succeeding power in (35) do tend to zero

as p 4 -, function T does not; of course, the product of the

power term and T do tend to zero. Nevertheless, (34) will be

more useful, since a simple recursion on p exists. (It has been

numerically verified that (25), (34), and (35) are all

independent of the particular value of the positive scaling

constant • in transformation (11); we are now free to choose the

value of • that results in the most rapid convergence of the

various series.) Results (25), (34), and (35) are alternative

expressions for the detection probability PD(v) of the normalizer

output ratio y/yo, with threshold value v; that is,

PD(v) = Pr(y/yo > v) for fixed v.

The numerical evaluation of form (34) requires a difference

in the bracketed term and thereby suffers a loss of accuracy. A

more useful numerical alternative, using a sum of positive terms,

is furnished by

En (v) = 1 - F ZL (L k 2vk (36)En(V + 2v f p +k2

p=-O k=K+p

This result follows upon use of (26) and (33). The inner sum on

k in (36) obviously goes to zero as p increases, as does

coefficient f . Recursions for the inner sum on k make this ap"

rapid accurate alternative to (34); result (36) is prograrm.1ed and

used in this investigation.

16
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CHECK ON EXCEEDANCE DISTRIBUTION (25)

Result (25) gave the normalizer exceedance distribution

function

En (v) = Pr(y > v yo) = Pry-o > v) (37)

If we now let the normalizer fixed threshold v be given by

V =--R (38)2L

then we find

En(v) = En = Pr y > u L . (39)

But as L 4 •, random variable y0 /(2L) tends to the value 1, since

the mean of y is 2L and its standard deviation is 2VL; see (24),

for which the k-th cumulant is L (k-l)! 2 k. Thus, we should have

lim En(•) = Pr(y > u) = E (u) (40)

where the latter exceedance distribution was given by (18).

In order to confirm this result, substitute v = u/(2L) into

(25) to obtain

En() = F + •T(K-I+p,L-1, + u/L (41)

p=0

But

S+ u/L = 1 + u/I•L) - exp - R) as L ( , (42)

17
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while

T mL-1,1 + u/L = L+k u/g k
k=0 •L

m (L)k (u/A)k k
Su•) ~• u/) as L (43)k k'

k=O (L + u/p) k- k

Therefore,

lim E = F exp - u) F f E
L4- np=--O P k=0 =0P-

(44)

in agreement with (18). Here, we used (B-17).

18
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FALSE ALARM PROBABILITY

If signal is absent from the processor input, the earlier

results for the normalizer output exceedance distribution

function should reduce to the false alarm probability. The

moments of normalizer output y/y are presented in appendix C,

when signal is absent. Also, in this case, we have Qmk = 0,

emk = 0, giving, from (13) - (14),

F = , aO = 0 , p aD = K - for p k 1 . (45)

There follows (see (A-5) - (A-6))

= f zp = exp = ap = exp K = I I - )p zp =
p=0 p=0 Pp=l 2

~exp( Kln[1 (1 -)I =l [- (1 - )z-K=

=-- -K 1- (-z)p ( p.p (1 - zp , (46)
p= 0  --

from which we find coefficients

f Kp (I - for p k 0 (47)fp = ! p,)

Then (25) reduces to the normalizer false alarm probability

S2vKL o KK

F2vj p ( - 2J T(K-l+p,L-1, 2

(48)
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Furthermore, since this result must be independent of •, we set

= 2 to get

PF (v) = 1  TK-1,L-1, v)-F +v)L ' '1 + v)

K-1 +(L)k v 
(

SvL• k! •=19

(I+v) k=v

)K L-1 (K). 1(0
1, + , (50)

= 1 - 1+ ) j=0 "! (1 + v)j

where we used (31). This result, (50), agrees with [2; (22)].

The form in (49) utilizes a sum of all-positive terms and thereby

retains significance for very small PF"

20
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GRAPHICAL RESULTS

The scenario to be considered here is the same as that used

in [1], namely, a sequence of K signal pulses, equally-spaced in

time but with no frequency shifts. Also, the covariance between

the signal amplitude fading coefficients will be taken to be

exponential in time separation. In this manner, we can make a

direct comparison of the results for the fixed-threshold

processor in [1] with the normalizer here, and numerically

determine the degradation associated with utilizing too small a

value for L, the number of noise-only bins. As in [1; page 68],

the KM deterministic signal-to-noise ratios lDkm/No} are all

taken to be zero, and the M strengths {r(m)i are all 1, for the

numerical examples investigated here.

Due to the multitude of parameters in this investigation, it

is expedient to hold all but one of them fixed, and to let one

parameter vary, thereby determining the effect of that parameter

by itself. The first series of plots in figures 2, 3, 4, 5, 6

correspond to varying K, the number of signal pulses in figure 1,

over the range K = 2, 3, 4, 5, 6. The curve for K = 1 has

already been given in [2; figure 32]; that analysis was, in fact,

exact for K = 1, M = 2.

The abscissa in all the plots is L, the number of noise-only

bins that are used to estimate the background noise level, and

which varies over the range from 1 to 100 in all cases. The

asymptotic values of required signal-to-noise ratio at L = are

available in [1]. The ordinate in the following plots is the
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input signal-to-noise ratio (SNR) E 1/N 0 in dB, required in order

to realize the specified performance levels in terms of detection

and false alarm probabilities, where E is the average random

received signal energy in one pulse, and N is the additive noise

power density level. The curves are parameterized ii- terms of

the false alarm probability, which is set to values 10-2, 10-4

10-, and 10 8 . The particular parameter values that apply to

each plot appear in the title for each figure. Parameter Coy 1

was defined and explained in (1) - (6); basically, it is the

covariance between adjacent signal pulses.

For most rapid convergence of the series for the exceedance

distribution function of the normalizer output, the value of

scaling p in transformation (11) should be changed for each point

computed on these plots. Some samples for the best A values are

tabulated in appendix D, along with the particular program used

for computing the results in all the figures here.

The first result in figure 2, for K = 2, replaces the

approximate result presented in [2; figure 33]. It will be seen

that approximately 1 dB less is required, according to the exact

results of figure 2 here; thus, the approximate analysis in [2]

was somewhat pessimistic in terms of the input signal-to-noise

ratio required to realize a specified performance level. This

same conclusion was also reached upon a comparison of the exact

analysis of the fixed-threshold processor in [1] with the

corresponding approximate analysis in [4].
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As the number of pulses, K, increases from 2 to 6 in figures

2 through 6, the required value of per-pulse SNR, E1/No,

decreases monotonically. However, the total SNR, summed over all

K pulses, increases with K; this same effect was observed and

investigated quantitatively in [4], although by an approximate

analysis.

The next series of plots, in figures 7 - 11, correspond to

varying covariance coefficient Cov 1 in (6) over the range 0 to 1

in steps of (n/4)½, for n = 0, 1, 2, 3, 4. The remaining

parameters are held fixed at values PD= .5, K = 4, M = 2. As

expected, the required input signal-to-noise ratio increases

monotonically with Coy 1 . The increases, as n makes the four

changes from 0 to 4, are in the ranges .15 to .21 dB, .21 to .28

dB, .31 to .35 dB, and .36 to .45 dB, respectively. The total

increases, as Coy 1 varies from 0 (figure 7) to I (figure 11) are

in the range 1.1 to 1.2 dB. Thus, at least for this example, the

cost of the fading covariance coefficient approaching unity is

moderate.

The final series of plots, in figures 12 - 14, depict the

variation of required input signal-to-noise ratio with M, the

number of components in the fading model [1; (45) - (47)].

(The plot in figure 12 is identical to figure 4 above.) As M

changes from 2 to 3, with other parameters fixed, the required

input SNR decreases by approximately 1 dB, while the change of M

from 3 to 4 allows for an additional decrease of .5 dB in

required input SNR. Generally, larger M means a fading channel

model subject to less severe deep fades; see [1; figures 2 - 8].
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Figure 2. Required SNR for PD .9, K = 2, M = 2, Coy V.5
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Figure 3. Required SNR for P D .9, K =3, M = 2, Coy1 =u.s
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Figure 6. Required SNR for PD= .9, K = 6, M = 2, CovI = i.5
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Figure 7. Required SNR for P= .5, K =4, M =2, Cov= 0
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Figure 8. Required SNR for P D .5, K =4, M =2, Coy1  V".25
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Figure 9. Required SNR for P = .5, K = 4, M 2, Coy = V.5
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Figure 10. Required SNR for P D .5, K =4, M =2, Coy1 =.75
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Figure 11. Required SNR for P = 5, K 4, M 2, Cov
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Figure 12. Required SNR for P= .9, K = 4, M = 2, Coy 1 =if.5
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Figure 13. Required SNR for P D --. 9, K =4, M =3, CoyI =V.5
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Figure 14. Required SNR for P = .9, K = 4, M = 4, Cov = V".5
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SUMMARY

The false alarm and detection probabilities, for a normalizer

operating in a fading medium, have been derived exactly in the

form of series expansions which are capable of efficient

recursive numerical evaluation. These results allow for multiple

signal pulses with an arbitrary covariance matrix between the

amplitude fadings applied to each signal pulse. Lack of

knowledge of the additive background noise level requires the use

of a group of noise-only bins, from which an estimate of the

noise level is made and used to establish a threshold for the

normalizer, in order to realize a specified false alarr

probability. The degradation associated with this noisy

threshold has been evaluated quantitatively; a program for its

evaluation in a specific environment is furnished in appendix D.

Some examples of its use have been presented in the figures

herein.

The expansion of the characteristic function in a series, as

developed here in appendix A, will be extended in [6] to include

a more general form of transformation than (11). This should

allow for series with more rapid convergence properties than

those derived here in (34) - (36), for example. In particular,

extensions of the Hermite series and the generalized Laguerre

series used in (5] will be developed.
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APPENDIX A. SERIES EXPANSION OF CHARACTERISTIC FUNCTION (7)

The transformation of variable in (11) is given by

=1- - = oz (A-I)

which yields

1 - i2& = 1 - z(l - ½0) 1 i2&Q =1 - z(l - ½W/Q)

1½z '- ½•z/Q . (A-2)

When these expressions are substituted into characteristic

function (7) and simplified, there follows

f (&) = F zK [1 - z(1 - ½•)]K(½M-1) ×

[(T Ti=F - z(1 - ½p/Qmk)]m=l k=l

[M K ½e mk/Q mk 1A3
x exp(~ (1 - z) M K ½ek-m I (A-3)

I- m=1 k=1 1 - z'1- ½"/Qmk)

where F is given by (13).
Except for the factor F zK, we now take the natural logarithm

of the right-hand side of (A-3) and expand in a power series in

z. After considerable simplification and grouping of similar

terms together, we find that this logarithm is given by

= a zp , (A-4)
p=0 P

where the coefficients a pI are given in (13) and (14).

Recalling the factor F zK in (A-3), we obtain the characteristic
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function of the fixed-threshold processor output y in the form

f = F zK exp(= ap zP. (A-5)

We now employ [5; page 93] to obtain the desired series in

powers of z according to

fy(•) = F zK = f zp (A-6)

where z is given by (A-I), and

f = exp(a 0 ) f n a = n a p-n for p k 1 . (A-7)

Expression (A-6) is the desired result. Numerous recursions

can be developed from these equations that enable rapid efficient

numerical evaluation of characteristic function f . More will be

said on this topic in the program for evaluation of the detection

probability for the normalizer output; see appendix D.
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APPENDIX B. INCOMPLETE GAMMA RELATIONS

Define the function

x -
v(-,x) = idy y F(1 exp(-y) for x k 0 v > 0 (B-i)

C~~x Jd r(v)
0

(This is P(v,x) in [3; 6.5.1].) Then, from [3; 6.5.2 and 6.5.3],

Sy(vx) = _ r(vx)1
Fr(v) r(v) ' (B-2)

in terms of incomplete gamma functicns. The function C(v,x) is a

cumulative distribution function; that is,

C(v',-) = 1 . (B-3)

It is also useful to notice that

C(O,x) = 0 , (B-4)

since the unit area of the integrand of (B-i) moves progressively

farther out in the positive direction as v increases. This can

be seen from the fact that the density (integrand) in (B-i) has

mean v and standard deviation Vtv.

Also, define function

v-i

p(V,x) = x exp(-x) for x k 0 , v > 0 . (B-5)
r(v)

Then function (B-i) satisfies recurrence
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x

C(v,x) = f dy p(v,y) = C(v-l,x) - p(v,x) for v > 1 , (B-6)

0

while

p(v,x) = p(v-l,x) V_--- for v > 1 . (B-7)

Convenient starting values for (B-6) and (B-7) are

C(½,x) = 2 §((2x)½) - 1 , C(l,x) = 1 - exp(-x) , (B-8)

p(½,x) = (Hx)- exp(-x) , p(l,x) = exp(-x) . (B-9)

As an example, with v = n,

p(n,x) = p(n-l,x) n-I for n = 2,3,4,... (B-10)

C(n,x) = C(n-l,x) - p(n,x) for n = 2,3,4,... (B-1I)

along with the starting values for p(l,x) and C(l,x) given in

(B-9) and (B-8), respectively.

As a second example, with v = n + ½,

p(n+½,x) = p(n-½,x) n X for n = 1,2,3 ,... (B-12)

C(n+½,x) = C(n-½,x) - p(n+h,x) for n = 1,2,3,... (B-13)

along with the starting values for p(½,x) and C(½,x) given in

(B-9) and (B-8), respectively.
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We also define exceedance distribution function

v-i

E(v,x) = 1 - C(v,x) = f dy e(v) -y)

x

= r(v,x)/F(v) for x Z 0 , v > 0 . (B-14)

Then

E(v,x) = E(v-l,x) + p(v,x) for v > 1 , (B-15)

with recursion (B-7) for p(v,x), and starting values

E(½,x) = 2 1(-(2x)½) , E(1,x) = exp(-x) (B-16)

We also have closed form

n-i k
E(n,x) = exp(-x) = x /k! for n Ž 1 (B-17)

k=0
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APPENDIX C. MOMENTS OF NORMALIZER OUTPUT FOR SIGNAL ABSENT

For ease in determining the value of threshold v to use in

(49), in order to realize specified false alarm probability PF'

it is helpful to know the moments of the normalizer output y/y0

when signal is absent. Here, we will determine the n-th moment

of ratio y/yo:

n n -n
Pn= yn n , (C-i)

where we have used the statistical independence of y and yo. By

reference to (24), we find

---n dx -n xL-I exp(-x/2) (L-i-n)! for L k n+i (C-2)
0 2L (L-I)! 2n (L-I)!0""

In a similar manner, for signal absent (replacing L by K),

K-i-n f dx n x exp(-x/2) = (K-l+n)! 2 n

0 2K (K- i)! (K-I)! (C-3)

00The first two moments of ratio y/yo are then given by

= K for L k 2 , 2 (K - i) K for L k 3 . (C-4)fll L P12 (L - 1)(L - 2)-

The variance of the normalizer output is then given by

Var(y/y 2 (L + K - 1) K for L k 3 (C-5)
(L - 1) (L - 2)

when signal is absent.
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APPENDIX D. PROGRAM FOR NORMALIZER SIGNAL-TO-NOISE RATIO

The program in this appendix computes the false alarm

probability by means of (49) and the detection probability by

means of (36). Since exceedance distribution function value (36)

is independent of A, a guess at A is required, preferably one

that leads to a rapidly convergent series. Here, this choice has

been made by trial and error and by observing and noting values

for § that were advantageous for "nearby" parameter values. For

the purpose of ease of programming and for interpretation of the

recursions in the listing below, we have utilized the following

notation:

A(p) = p a for p k 1 , (D-1)

F(p) = F f for p k 0 , (D-2)
p

Be(m,k) = • emk Bl(m,k) = 1 - Q (D-3)2Qmk Qmk ' 2Qmk

Cp(m,k) = Bl(m,k) + p Be(m,k) , Bp(m,k) = Bl(m,k)p- 1 , (D-4)

Dp = K - ) - . (D-5)

The program below allows for arbitrary values of the

deterministic signal-to-noise ratios IDkm/No0; however, it was

utilized here only for the special case of all IDkm/No 0 equal to

zero. Also, the program is written such that IDkm/No 1 are held

fixed while E1I/N0 is varied to meet the specified detection

probability PD'
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10 ! NORMALIZER, NUWC-NPT TR 10275, 21 JANUARY 1993
20 Pf=.01 I FALSE ALARM PROBABILITY
30 Pds.9 I DETECTION PROBABILITY
40 K=2 I NUMBER OF SIGNAL PULSES
50 L=10 NUMBER OF NOISE-ONLY BINS
60 M=2 i NUMBER OF FADING COMPONENTS
70 DATA 1.,1. I POWER RATIOS r(m) FOR I <( m <= M
80 DATA 0.,0.,0.,0. I Dkm/No FOR 1 <= k <= K, 1 <= m <= M
90 DATA l.,2. i TIMES tk (SEC) FOR I <= k <= K
100 DATA 0.30. I FREQUENCIES fk (HZ) FOR I <= k <= K
110 Eno8=2O. I El/No STARTING VALUE (UE5S)
120 Elnol=Elno0*.l I El/No INCREMENT
130 Ef=1.E-15 I TOLERANCE ON PC
140 Ed=i.E-1O I TOLERANCE ON Pd
150 P=500 I MAXIMUM NUMBER OF TERMS IN SUM (36)
160 OPTION BASE 1
170 COM DOUBLE KLM,P I INTEGERS (NOT DOUBLE PRECISION)
180 DOUBLE Ms,Ks,Js,L1 I INTEGERS
190 DIM Rs(5),Dn(10,5),Ts(10),Fs(10),Psi(5),Cbar(10,10)
200 DIM U(10,10),V(16,10),Eig(l0),Sq(l0,5)
210 COM V,B2,Prod(5,1O),Es(5,1O),E(0:500),BI(5,10)
220 COM Be<5,10),Bp<5,10),Cp(5,10),F(0:500),R(58O)
230 REDIM Rs(M),Dn(K,M),Ts(K),Fs(K),Psi(M),Cbar(K,K)
240 REDIM U(K,K),V(K,K),Eig(K),Sq(K,M)
250 REDIM Prod(M,K),Es(M,K),E(0:P),BI(M,K)
260 REDIM Be(M,K),Bp(M,K),Cp(M,K),F(0:P),A(P)
270 PRINT
280 PRINT "PC =";Pf;" K ='6;K;" L =";L;" M =";M
290 READ Rs(*),Dn(*),Ts(*),Fs(*) ! Dn(*) WAS FILLED IN THE ORDER:
300 S=O. i Dn(l,l),Dn(1,2),Dn(1,3),...,Dn(k,m),...,Dn(K,M)
310 FOR Ms=- TO M
320 S=S+Rs(Ms)
330 NEXT Ms
340 FOR Ms=l TO M
350 Psi(Ms)=Rs(Ms)/S I 11; (191)]
360 NEXT Ms
370 FOR Ks=- TO K
380 FOR Jisi TO K
390 Cov=FNCov(Ts(Ks)-Ts(Js),Fs(Ks)-Fs(Js))
400 Cbar(Ks,Js)=Cov I NORMALIZED COVARIANCE MATRIX [1; (127)]
410 NEXT Js
420 NEXT Ks
430 MAT U=Cbar
440 CALL Svd(K,K,U(*),V(*),Eig(*)) I OUTPUTS: U(*),V(*),Eig(*)
450 PRINT "EIGENVALUES:"
460 PRINT Eig(*)
470 FOR Ms=l TO M
480 T=2.*Psi(Ms)
490 FOR Ks-i TO K
500 Prod(Ms,Ks)=T*Eig(Ks)
510 Sq(Ks,Ms)=SQR(2.*Dn(Ks,Ms))
520 NEXT Ks
530 NEXT Ms
540 FOR Ks=l TO K
550 FOR Ms-i TO M
560 S=e.
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570 FOR Js=l TO K
580 S=S+V(Js,Ks)*Sq(Js,Ms)
590 NEXT Js
600 Es(Ms,Ks)=S*S
610 NEXT Ms
626 NEXT Ks
630 IF L<3 THEN 680
640 Mean=K/(L-1) I (C-4)
650 Var=(L+K-1)*K/((L-I)^A*(L-2)) I (C-5)
660 VO=Mean+SQR(Var)*3. I THRESHOLD STARTING VALUE (GUESS)
670 GOTO 690
680 VO=200 I THRESHOLD STARTING VALUE (iUESS)
690 V1=VO*.1 I THRESHOLD INCREMENT
700 CALL Inversfunctioni(-Pf,Ef,Vy,V1,V)
710 Beta=23. ! SCALING FACTOR (GUESS)
720 PRINT "Threshold V =";V;" Beta =";Beta
730 B2=Beta/2.
740 X=V/(B2+V)
750 Tk=(B2/(B2+V))AL
760 LI=L-1
770 FOR Ks=1 TO K-i
780 Tk=Tk*X*(Ks+L1)/Ks
790 NEXT Ks
800 FOR Ks=K TO K+P
810 Tk=Tk*X*(Ks+L1)/Ks
820 E(Ks-K)=Tk
830 NEXT Ks
840 S=Tk
850 A: FOR Ks=K+P+l TO 2800
860 Tk=Tk*X*(Ks+L1)/Ks
870 S=S+Tk
880 IF Tk<=S*1.E-15 THEN 920 I ERROR TOLERANCE
890 NEXT Ks
900 PRINT "2000 TERMS ARE INSUFFICIENT IN LINE A:"
910 PAUSE
920 E(P)=S
930 FOR Ks=P-1 TO 0 STEP -1
940 E(Ks)=S=S+E(Ks)
950 NEXT Ks
968 CALL Inversfuncttion2(Pd,Ed,ElnoO,Elnol,Elno)
970 Db=18.*LGT(Elno) I SNR El/No in dB
980 YI=MIN(F(*))
990 Y2=MAX(F(*))

1000 PRINT "dB =";Db;" Yi = ";Y1;" Y2 =";Y2
1010 GINIT
1020 PLOTTER IS "GRAPHICS"
1030 GRAPHICS ON
1040 WINDOW 0.,50.,YI,Y2
1050 LINE TYPE 3
1060 GRID 10.,.I
1070 LINE TYPE I
1880 FOR Js=O TO P
1090 PLOT Js,F(Js) ' EXPANSION COEFFICIENTS F f'c.ub p)
1180 NEXT Js
1110 PENUP
1120 PAUSE
1130 END
1140
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1150 DEF FNCov(Tau,Nu) NORMALIZED COVARIANCE:
1160 Rho=.5 R11(Tau,Nu)/RI1(O,O); SEE (4)
1170 A=-.5*LOG(Rho)
1180 B=O.
1190 Cov=EXP(-R*ABS(Tau)-B*ABS(Nu)) EXPONENTIAL
1200 RETURN Coy
1210 FNEND
1220
1230 DEF FNPC(V) PROBABILITY OF FALSE ALARM
1240 COM DOUBLE K,L ! INTEGERS
1250 DOUBLE Ks,L1 I INTEGERS
1260 IF V<=0. THEN RETURN 1.
1270 V1=V/(1.+V)
1280 Pf=T=EXP(-L*LOG(I.+V))
1290 LI=L-1
1300 FOR Ks=1 TO K-I
1310 T=T*VI*(LI+Ks)/Ks
1320 Pf=PC+T
1330 NEXT Ks
1340 RETURN -Pf ' - TO YIELD INCREASING FUNCTION OF V
1350 FNEND
1360
1370 DEF FNPd(Elno) I PROBABILITY OF DETECTION
1380 COM DOUBLE K,L,M,P I INTEGERS
1390 COM V,B2,Prod(*),Es(*),E(*),B1(*),Be(*),Bp(*),Cp(*),F(*),A(*)
1400 DOUBLE Ms,Ks,Ps I INTEGERS
1410 Tol=I.E-8 ! RELATIVE ERROR OF SUM
1420 F=I.
1430 S=o.
1440 FOR Ms=I TO M
1450 FOR Ks=l TO K
1460 Q=l.+Elno*Prod(Ms,Ks)
1470 Eq=Es(Ms,Ks)/Q
1480 F=F*Q
1490 S=S+Eq
1500 Bq=B2/Q
1510 BI(Ms,Ks)=I.-Bq
1520 Be(Ms,Ks)=Bq*Eq
1530 Bp(Ms,Ks)=1.
1540 Cp(Ms,Ks)=I.-Bq
1550 NEXT Ks
1560 NEXT Ms
1570 F(O)=EXP(K*LOG(B2)-.5*S)/SQR(F)
1580 Pd=1.-F(O)*E(O)
1590 B21=1.-B2
1600 DP=K*(M/2.-1.)
1610 TI=I.
1620 B: FOR Ps=l TO P
1630 Dp=Dp*B21
1640 S=0.
1650 FOR Ms=1 TO M
1660 FOR Ks=I TO K
1670 IF Ps=l THEN 1690
1680 Bp(Ms,Ks)=TI=Bpf ts,Ks)*BI(Ms,Ks)
1690 Cp(Ms,Ks)=T2=Cp(Ms,Ks)+Be(Ms,Ks)
1700 S=S+TI*T2
1710 NEXT Ks
1720 NEXT Ms

44



TR 10275

1730 A(Ps)=.5*S-Dp
1740 s=o.
1750 FOR Ms=l TO Ps
1760 S=S+R(Ms)*F(Ps-Ms>
1770 NEXT Ms
1780 F(Ps)=F=S/Ps APPENDIX A
1781 Do=Del
1790 Del=F*E(Ps)
1800 Pd=Pd-Del
1801 IF Ps=l THEN 1820
1810 IF ABS(Do)+ABS(DeI)<=Pd4Tol THEN 1850
1820 NEXT Ps
1830 PRINT P;"TERMS ARE INSUFFICIENT IN LINE B:"
1840 PAUSE
1850 FOR Ms=Ps+1 TO P
1860 F(Ms)=A(Ms)=0.
1870 NEXT Ms
1880 PRINT "Pd =";Pd;" Ps =";Ps,"E1/No =";Elno
1890 RETURN Pd
1900 FNEND
1910
1920 SUB Inversfunctionl(Desired,Error,X1,Del,X2.
1930 X2=X1+Del
1940 F1=FNPf(XI) FALSE ALARM PROBABILITY
1950 F2=FNPf(X2)
1960 IF F2>=Desired THEN 2010
1970 XI=X2
1980 X2=X2+Del
1990 FI=F2
2000 GOTO 1950
2010 IF Fl<=Desired THEN 2070
2020 X2=XI
2030 XI1X1-Del
2040 F2=F1
2050 FI=FNPf(XI)
2060 COTO 2010
2070 Xa=XI
2080 Xb=X2
2090 IF (F2-Desired)<(Desired-Fl) THEN 2160
2100 T=X1
2110 Xl=X2
2120 X2=T
2130 T=F1
2140 FI=F2
2150 F2=T
2160 IF ABS(F2-Desired)<Error THEN 2260
2170 IF F2=F1 THEN 2260
2180 T=(Xl*(F2-Desired)-X2*(FI-Desired))/(F2-Fl)
2190 T=MAX(T,Xa)
2200 T=MIN(T,Xb)
2210 XI=X2
2220 X2=T
2230 FI=F2
2240 F2=FNPf(X2>
2250 GOTO 2160
2260 SUBEND
2270 I
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2280 SUB Inversfunction2(Desired,Error,X1,Del,X2)
2290 X2=Xl+Del
2300 FI=FNPd(XI) DETECTION PROBABILITY
2310 F2=FNPd(X2)
2320 IF F2>=Desired THEN 2370
2330 XI=X2
2340 X2=X2+Del
2350 FI=F2
2360 GOTO 2310
2370 IF Fl<=Desired THEN 2430
2380 X2=XI
2390 XI=XI-Del
2400 F2=F1
2410 FI=FNPd(XI)
2420 GOTO 2370
2430 Xa=X1
2440 Xb=X2
2450 IF (F2-Desired)<(Desired-F1) THEN 2520
2460 T=X1
2470 XI=X2
2480 X2=T
2490 T=F1
2500 FI=F2
2510 F2=T
2520 IF ABS(F2-Desired)<Error THEN 2620
2530 IF F2=F1 THEN 2620
2540 T=(Xl*(F2-Desired)-X2*(FI-Desired))/(F2-F1)
2550 T=MAX(T,Xa)
2560 T=MIN(T,Xb)
2570 X1=X2
2580 X2=T
2590 FI=F2
2600 F2=FNPd(X2)
2610 GOTO 2520
2620 SUBEND
2630
2640 SUB Svd(DOUBLE M,N,REAL A(*),V(*),W(*))
2650 THIS SUBROUTINE COMPUTES THE SINGULAR VALUE DECOMPOSITION
2668 ! OF AN ARBITRARY REAL MxK MATRIX A: A = U W Vt, M >= N.
2670 U IS MxN, V IS NxN, W IS NxN: W = DIAG(D(n)).
2680 ALLOCATE Rvl(I:N) NUMERICAL RECIPES, PAGES 60-64
2690 IF M>=N THEN 2720 A(*) IS OVER-WRITTEN
2700 PRINT "M<N IS DISALLOWED"
2710 PAUSE
2720 DOUBLE I,J,K,L,Its,Nm,Jj INTEGERS (NOT DOUBLE PRECISION)
2730 G=Scale=Anorm=O.
2740 FOR I=1 TO N
2750 L=I+I
2760 Rvl(1)=Scale*G
2770 G=S=Scale=O.
2780 IF I>M THEN 3060
2790 FOR K=I TO M
2800 Scale=Scale+ABS(A(K,I))
2810 NEXT K
2820 IF Scale=0. THEN 3060
2330 FOR K=I TO M
2840 a=aA k,I=A(K,I),Sc.ale
2850 S=S+Ra*Aa
2868 NEXT K
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2870 F=A(I,I)
2880 C=-SQR(S)
2890 IF F<8. THEN G=-G
2900 H=F*G-S
2910 A(I,I)=F-G
2920 IF I=N THEN 3030
2930 FOR J=L TO N
2940 S=o.
2950 FOR K=I TO M
2960 S=S+A(K,I)*A(K,J)
2970 NEXT K
2980 F=S/H
299W FOR K=I TO M
3000 A(K,J)=R(K,J)+F*R(K,I)
3010 NEXT K
3020 NEXT J
3030 FOR K=I TO M
3840 R(K,I)=R(K,I)*Scale
3050 NEXT K
3060 W(I)=Scale*G
3070 G=S=Scale=0.
3080 IF (I>M) OR (I=N) THEN 3386
3090 FOR K=L TO N
3100 Scale=Scale+ABS(A(I,K))
3110 NEXT K
3120 IF Scale=O. THEN 3380
3130 FOR K=L TO N
3140 a=aR(I,K)=( I,K)/Scale
3150 S=S+Aa*Aa
3160 NEXT K
3170 F=A(I,L)
3180 G=-SQR(S)
3190 IF F<0. THEN G=-G
3200 H=F*G-S
3210 A(I,L)=F-G
3220 FOR K=L TO N
3230 Rvl(K)=A(I,K)/H
3240 NEXT K
3250 IF I=M THEN 3350
3260 FOR J=L TO M
3270 S=0.
3280 FOR K=L TO N
3290 S=S+A(J,K)*A(I,K)
3300 NEXT K
3310 FOR K=L TO N
3320 A(J,K)=A(J,K)+S*Rvl(K)
3330 NEXT K
3340 NEXT J
3350 FOR K=L TO N
3360 A(I,K)=A(I,K)*Scale
3378 NEXT K
3380 Anorm=MRX(Anorm, BS(W(I))+RBS(Rvl(1)))
3390 NEXT I
3400 FOR I=N TO I STEP -1
3410 IF I>=N THEN 3580
3420 IF G=0. THEN 3550
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3430 FOR J=tL TO N
3440 V(J,I)=R(I,J)/A(I,L)/G
3450 NEXT J
3460 FOR J=L TO N
3470 S=0.
3480 FOR K=L TO N
3490 S=S+A(I,K)*V(K,J)
3500 NEXT K
3510 FOR K=L TO N
3520 V(K,J)=V(K,J)+S*V(K,I)
3530 NEXT K
3540 NEXT J
3550 FOR J=L TO N
3560 V(I,J)=V(i,I)=6.
3570 NEXT J
3580 V(I,I)=l.
3590 G=Rvl(I)
3600 L=I
3610 NEXT I
3620 FOR I=N TO I STEP -1
3630 L=I+I
3640 GW(I)
3650 IF 1>=N THEN 3690
3660 FOR J=L TO N
3670 A(I,J)=O.
3688 NEXT J
3690 IF G=0. THEN 3860
3700 G=I./G
3710 IF 1=N THEN 3820
3720 FOR J=L TO N
3730 S=0.
3740 FOR K=L TO M
3750 S=S+A(K,I)*A(K,J)
3760 NEXT K
3770 F=S/A(I,I)*G
3780 FOR K=I TO M
3790 A(K,J)=A(K,J)+F*A(K,I)
3800 NEXT K
3810 NEXT J
3820 FOR J=l TO M
3830 R(J,I)=R(J,I)*G
3840 NEXT J
3850 GOTO 3890
3860 FOR J=I TO M
3870 R(J,I)=O.
3880 NEXT J
3890 RI)=A(II)+1.
3900 NEXT I
3910 FOR K=N TO 1 STEP -1
3920 FOR Its=l TO 30
3930 FOR L=K TO 1 STEP -1
3940 Nm=L-1
3950 IF (ABS(Rvl(L))+Anorm)=Rnorm THEN 4178
3960 IF (ABS(W(Nm))+Pnorm)=Anorm THEN 3988
3970 NEXT L
3980 CuG.
3990 8=I.
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4000 FOR I=L TO K
4010 F=S*Rvl(I)
4020 Rvl(I)=C*Rvl(I)
4030 IF (ABS(F)+Anorm)=Anorm THEN 4170
4640 G=WCI)
4050 H=SQR(F*F+G*G)
4068 W(I)=H
4070 H=1./H
4080 C=G*H
4090 S=-F*H
4100 FOR 3=1 TO M
4110 Y=A(J,Nm)
4120 ZAR(J,I)
4130 A(3,Nm)=Y*C+Z*S
4140 A(J,I)=-Y*S+Z*C
4150 NEXT J
4160 NEXT I
4170 Z=W(K)
4180 IF L(>K THEN 4250
4190 IF Z>=0. THEN 4240
4200 W(K)=-Z
4210 FOR 3=1 TO N
4220 V(J,K)=-V(J,K).
4230 NEXT J
4240 GOTO 4780
4250 IF Its<30 THEN 4280
4260 PRINT "NO CONVERGENCE IN 30 ITERATIONS"
4270 PAUSE
4280 X=W(L)
4298 Nm=K-1
4300 Y=W(Nm)
4310 G=Rv1(Nm)
4320 H=Rv1(K)
4330 F=( (Y-Z)*(V+Z)+(G-H)*(C+H) )'(2. *H*Y)
4340 G=SQR(F*F+1.)
4350 Aa=ADSCG)
4360 IF F<0. THEN Aa=-Aa
4370 F=( (X-Z)*(X+Zfl-H*( (V'(F+Aa) )-H) )'X
4380 C=S=1.
4390 FOR J=L TO Nm
4400 I=3+1
4410 G=Rv1(I)
4420 Y=W(,I)
4430 H=S*G
4440 G=C*G
4450 Z=SQR(F*F+H*H)
4460 Rvl(J)=Z
4470 C=F'Z
4480 S=H'Z
4490 F=X*C+G*S
4500 G=-X*S+G*C
4510 HuY*S
4520 Y=Y*C
4530 FOR 3j=1 TO N
4548 X=V(Jj,J)
4550 Z=V(Jj,I)
4560 V(Jj,J)=X*C+Z'*S
4570 V(3j, I)-X*S+Z*C
4580 NEXT JJ
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4590 Z=SQR(F*F+H*H)
4600 W(J)=Z
4610 IF Z=8. THEN 4650
4620 Z=1./Z
4630 C=F*Z
4640 S=H*Z
4650 F=C*G+S*Y
4668 X=-S*G+C*Y
4670 FOR Jj=l TO M
4680 Y=A(Jj,J)
4690 Z=R(Jj,I)
4700 R<Jj,J)=Y*C+Z*S
4710 R(Jj,I)=-Y*S+Z*C
4720 NEXT Jj
4730 NEXT J
4740 RvI(L)=8.
4750 Rvl(K)=F
4760 W(K)=X
4770 NEXT Its
4780 NEXT K
4790 SUBEND

The values of threshold v and required input signal-to-noise

ratio E1 /No, that are yielded by the above program, are listed

below, as a function of L, the number of noise-only bins. The

values of scaling factor p are chosen to approximately minimize

the number of terms, Np, used in the p-summation in (36).

L v E 1 /N 0 (dB) Np

1 198.5 27.263 535 14
2 15.98 19.123 85 12
3 6.099 16.566 48 10
4 3.503 15.317 36 10
5 2.398 14.577 31 10
6 1.804 14.086 28 10
7 1.439 13.738 26 10
8 1.193 13.477 25 9
9 1.018 13.274 24 9

10 .8861 13.113 23 9
16 .4962 12.569 21 8
24 .3115 12.267 20 8
32 .2267 12.117 19 8
48 .1467 11.966 18 8
64 .1084 11.891 18 8

100 .0683 11.810 18 8
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